Indore
+917760547341

'type'

Items tagged with 'type'

JOINT REPLACEMENT SURGEON IN INDORE

JOINT REPLACEMENT SURGEON IN INDORE WHAT IS JOINT REPLACEMENT? Joint replacement as the name suggests is the replacement of the torn or damaged joint in the body of an individual. The damaged joint in the body is replaced by artificial joint (prosthesis) made of metal, plastic or ceramic. Joint replacement is most commonly done to relive joint pain that can be caused die to various reasons. Some of these reasons are as follows: 1.osteoarthritis 2.rheumatoid arthritis 3.joint injuries The joint replace surgery helps restore the mobility of the patients and give him back the old quality of life where he doesn’t have to struggle with day to day activities due to joint related issues. The joint replacement surgery is mostly performed when the medicines and physiotherapy can’t seem to relieve the pain of the patient. Common Joints Replaced: 1.Knee (most common) 2.Hip 3.Shoulder 4.Elbow 5.Ankle TYPES OF JOINT REPLACEMENT 1. Knee Replacement Total Knee Replacement (TKR): Entire knee joint is replaced — both sides of the joint and the kneecap. Partial Knee Replacement (PKR): Only one part (inner, outer, or kneecap area) of the knee is replaced. Revision Knee Replacement: Done if the first knee implant wears out or fails. 2. Hip Replacement 3. ⁠Total Hip Replacement (THR): Both the ball (femoral head) and socket (acetabulum) are replaced. Partial Hip Replacement (Hemiarthroplasty): Only the ball of the hip joint is replaced. Hip Resurfacing: Bone is preserved by capping the ball instead of replacing it. Revision Hip Replacement: Second surgery if the first implant fails. 3. Shoulder Replacement Total Shoulder Replacement: Both the ball (humeral head) and socket (glenoid) are replaced. Partial Shoulder Replacement (Hemiarthroplasty): Only the ball part is replaced. Reverse Shoulder Replacement: Used in cases of rotator cuff damage or failed previous surgeries — ball and socket positions are reversed. 4. Elbow Replacement Replaces the damaged parts of the elbow joint with metal and plastic components. Mostly done for rheumatoid arthritis or complex fractures. 5. Ankle Replacement Less common than other joint replacements. Used in advanced arthritis or post-injury damage when movement is severely limited. SIGNS THAT ONE IS IN NEED OF JOINT REPLACEMENT: Joint replacement is usually considered when joint damage severely affects your daily life, and other treatments like medicines, physiotherapy, or injections no longer help. Here are the key signs that someone might need a joint replacement (knee, hip, shoulder, etc.): 1. Persistent Joint Pain Constant or severe pain that doesn’t go away, even with rest or medication. Pain that wakes you up at night or limits your ability to sit, stand, or sleep. 2. Stiffness and Limited Movement Difficulty in bending, straightening, or rotating the joint. Trouble doing everyday activities like climbing stairs, walking, or lifting your arm. 3. Swelling and Inflammation Chronic swelling that doesn’t improve with rest, ice, or medicines. Signs of joint inflammation that come and go, or stay constantly. 4. Joint Deformity Visible changes like bowed legs, uneven leg length, or misalignment of the joint. The joint may appear “sunken,” twisted, or bulged. 5. Dependence on Painkillers or Walking Aids Needing pain medicines daily just to function. Using a walker, cane, or crutches regularly due to pain or weakness. 6. X-ray or MRI Shows Severe Damage Imaging shows bone-on-bone contact, joint space narrowing, cartilage loss, or joint collapse. Bone spurs, cysts, or joint erosion. 7. Failed Conservative Treatments No long-term relief from: Physiotherapy Joint injections Weight loss and lifestyle changes 8. Declining Quality of Life You avoid walking, traveling, or socializing because of joint pain. Pain interferes with work, hobbies, or mental health. ADVANTAGES OF JOINT REPLACEMENT SURGERY: 1.Pain Relief Significantly reduces or completely eliminates chronic joint pain. 2.Improved Mobility and Function Restores movement, making walking, climbing stairs, or daily tasks easier. 3.Better Quality of Life Helps you return to normal activities, work, and hobbies with greater independence. 4. Long-Lasting Results Modern implants can last 15–20 years or more, giving years of active, pain-free living. For more details on total hip replacement/ DAA total hip replacement, please visit our dedicated website for hip joint issues created by Dr Vikas jain- www.hipreplacementindia.in https://hipreplacementindia.in/treatment/bikini-hip-replacement/

HIP REPLACEMENT SURGEON IN INDORE

HIP REPLACEMENT SURGEON IN INDORE WHAT IS HIP REPLACEMENT SURGERY? Hip replacement surgery, also known as hip arthroplasty, is a surgical procedure in which a damaged or worn-out hip joint is removed and replaced with an artificial joint (prosthesis) made of metal, ceramic, or plastic. This is usually done to relieve severe pain, stiffness, and loss of mobility caused by conditions like osteoarthritis, rheumatoid arthritis, fractures, or avascular necrosis. The surgeon replaces the ball-and-socket parts of the hip joint: the head of the femur (thigh bone) and the hip socket (acetabulum). Hip replacement helps restore normal movement, reduce or eliminate pain, and significantly improve quality of life when other treatments like medication, physiotherapy, or lifestyle changes no longer work. MAIN CAUSES OF HIP REPLACEMENT 1. Osteoarthritis The most common reason. Caused by age-related wear and tear of the hip joint cartilage.Leads to pain, stiffness, and reduced mobility. 2. Rheumatoid Arthritis An autoimmune disease that causes chronic inflammation of the joints. It Destroys cartilage and bone, leading to severe joint damage and deformity. 3. Hip Fractures This is Especially common in older adults after falls. If the bone can't be repaired properly, hip replacement is often needed. 4. Avascular Necrosis (AVN) It Occurs when the blood supply to the hip bone is reduced, causing the bone to die and collapse. It Can be due to steroid use, alcohol abuse, trauma, or certain medical conditions. 5. Childhood Hip Diseases (e.g., Developmental Dysplasia, Perthes' disease) Improper hip development can cause long-term joint problems. These conditions may eventually lead to early joint damage and arthritis, requiring replacement in adulthood. TYPES OF HIP REPLACEMENT SURGERY 1. Total Hip Replacement (THR) – Most Common Both the ball (femoral head) and the socket (acetabulum) are replaced with artificial components. 2. Partial Hip Replacement (Hemiarthroplasty) In this surgery Only the femoral head (ball) is replaced and the socket is left as it is. 3. Hip Resurfacing In this surgery The femoral head is not removed, but instead it is reshaped and capped with a metal cover. The socket may still be replaced. 4. Revision Hip Replacement A repeat surgery is done when a previous hip replacement has failed or worn out. This is More complex and may involve replacing only part or maybe all components. It is Needed due to implant loosening, infection, fracture, or wear. WHO NEEDS HIP REPLACEMENT Hip replacement surgery is recommended for people who have severe hip joint damage that causes chronic pain, stiffness, and difficulty in movement, and does not improve with medicines. Who needs it : 1.People with Advanced Osteoarthritis 2.Patients with Rheumatoid Arthritis 3.Individuals with Avascular Necrosis (AVN) 4.People with Hip Fractures (Especially Elderly) 5.Those with Childhood Hip Disorders. Common signs that you may need hip replacement surgery : 1.Constant hip pain, even while resting 2.Stiffness and limited range of motion 3.Limping or difficulty standing/walking 4.No improvement with physiotherapy, medication, or injections. HOW IS HIP REPLACEMENT DONE? Hip replacement surgery is a procedure where a damaged hip joint is replaced with an artificial implant to relieve pain and restore movement. It usually takes 1.5 to 2 hours and is done under spinal or general anesthesia. How is it done? 1.Anesthesia The patient is given spinal anesthesia (numbs the body below the waist) or general anesthesia (makes you sleep during surgery). Sometimes a combination is used. 2. Incision A cut is made over the side, front, or back of the hip, depending on the approach used. Traditional approach: larger incision (20–30 cm) Minimally invasive: smaller incision (8–15 cm) 3. Removing the Damaged Bone The femoral head (ball part of the hip joint) is removed. The damaged cartilage and bone from the socket (acetabulum) are also cleaned out. 4. Inserting the Artificial Implants A metal or ceramic cup is placed into the hip socket. A metal stem is inserted into the thigh bone (femur), and a ball (metal or ceramic) is attached to the top. These parts together form the new artificial hip joint. 5. Fixing the Implants Implants may be cemented into place (common in older adults) or left uncemented, allowing bone to grow onto them Sometimes a combination of both methods is used. 6. Closing the Incision Muscles and tissues are repaired, and the skin is stitched or stapled. For more details on total hip replacement/ DAA total hip replacement, please visit our dedicated website for hip joint issues created by Dr Vikas jain- www.hipreplacementindia.in https://hipreplacementindia.in/treatment/bikini-hip-replacement/

Best Knee replacement Surgeon in Indore

Best Knee replacement Surgeon in Indore WHAT IS ARTHRITIS? Knee replacement surgery is mostly performed in the cases of arthritis. It is a general term for various conditions which can cause pain, swelling and stiffness in the joints. It can affect one or multiple joints in the body sometimes leading to complete damage of cartilage which leads to making the movement severely painful. Symptoms of Arthritis: 1. Joint pain 2. Swelling and warmth 3. Stiffness (especially in the morning) 4. Redness 5. Limited movement 6. Cracking or grinding sounds. WHAT IS KNEE REPLACEMENT? Knee replacement, also known as knee arthroplasty, is a surgical procedure where a damaged or worn-out knee joint is replaced with an artificial joint (implant). This artificial joint can be made of metal, plastic, or ceramic. It is usually done to relieve severe knee pain and improve movement when other treatments like medicines or physiotherapy doesn’t seem to work or provide relief. TYPES OF KNEE REPLACEMENT There are 4 main types of knee replacement surgeries, each chosen on the basis of how damage the knee is and the patient's age, activity level, and overall health. 1. TOTAL KNEE REPLACEMENT SURGERY (TKR) As the name suggests total knee replacement surgery is the type of surgery which replaces the complete knee of the patient. In this surgery entire knee is replaced including both sides if the knee ( femur and tibia) and sometimes even the knee cap ( patella). This surgery is generally suitable for the people going through severe arthritis as it provides long term relief and generally the recovery of 2-3 months. Most people above 60 with arthritis are advised with Total knee replacement surgery. 2. PARTIAL KNEE REPLACEMENT SURGERY (PKR) As the name is self explanatory, partial knee replacement unlike total knee replacement replaces only one part of the knee. It can either be any of the two sides of the knee or the frontal part. It is recovered fast as compared to total knee surgery and is less invasive. It is usually done in early stages of arthritis. 3. BILATERAL KNEE REPLACEMENT In bilateral knee surgery both knees are replaced on the same day or in the single surgery. It is suitable if both knees are severely affected and you are medically unfit and in alarming need if both knee replacements. The recovery is intense as compared to the prior two surgeries as both the knees are replaced. REVISION KNEE REPLACEMENT A repeat surgery done when an old knee implant wears out, loosens, or gets infected. It is more complex than the first surgery. It is Usually needed after 15–20 years of the first replacement (or earlier if complications arise). SIGNS THAT YOU NEED KNEE REPLACEMENT: Knee replacement surgery is generally required when the non surgical treatment can’t seem to relieve the pain any longer. 1. Severe knee pain. 2. ⁠Advanced Arthritis 3. ⁠Joint Stiffness and limited range of motion 4. ⁠Swelling and inflammation doesn’t just go away 5. ⁠Failed non surgical treatments 6. ⁠Poor quality of life like difficulty in performing day to day activities like walking. 7. ⁠Deformity or structural instability. Knee visibly looks crooked. 8. ⁠post traumatic Arthritis. For more details on total knee replacement/ robotic total knee replacement, please visit our dedicated website for knee issues created by Dr Vikas jain- www.tkasurgery.com https://tkasurgery.com/robotic-total-knee-replacement-surgery/

Shoulder Arthroscopy- Frozen Shoulder Release

Shoulder Arthroscopy- Frozen Shoulder Release Frozen shoulder, also called adhesive capsulitis is a condition characterized by pain and loss of motion in shoulder joint. Frozen shoulder release is extremely useful in cases of frozen shoulder that do not respond to therapy and rehabilitation. The aim of the surgery is to decrease pain, reduce the recovery time and help to gain full range of movement. Arthroscopic capsular release and manipulation under anesthesia (MUA) are the surgical procedures performed to treat the frozen shoulder. PRE-OPERATIVE STEPS Every effort is made to assess the patient prior to surgery in order to ensure safety of the patient for the elective procedure. 1. After admission, routine blood work-up will be done prior to surgery. Depending on the age of the patient and other premorbid conditions, other investigations such as Echocardiography may be performed. 2. All the investigations prior to surgery are performed in order to ensure that the surgical procedure can be safely tolerated by the patient, since shoulder arthroscopy is an elective procedure. If any risk is involved, the patient/ attendants will be informed so. 3. Blood transfusion though rarely required, may be done depending on the reports. 4. X-rays and/or MRI may be done depending on the surgeon’s choice and the surgical indication. 5. Surgical consent will be explained to the patient detailing the procedure as well as the risks involved, if any. INTRA-OPERATIVE STEPS A manipulation under anesthesia (MUA) is most commonly indicated in patients with simple frozen shoulder. This procedure is performed with the patient sedated under anesthesia. Your surgeon moves the shoulder through a range of motion which causes the capsule and scar tissue to stretch or tear. Thus the tight capsule is released allowing increased range of motion. The procedure involves freeing the shoulder by manipulation and does not involve any incisions. Arthroscopic capsular release is a keyhole surgery that involves the release of the tight, constricted capsule. It is an effective treatment for most people with stiff shoulder after injury, trauma, or fracture, and diabetes. 1. During the procedure 2 to 3 small incision holes are made in the shoulder in the front and the back. 2. The thickened, swollen abnormal capsule tissue is cut and removed using a special radiofrequency thermal probe with adequate precautions to not damage the normal tissue. 3. Once adequate capsular release is achieved, wound is closed and dressing applied. 4. Once again the shoulder movements are checked to ensure adequate shoulder release. POST-OPERATIVE MANAGEMENT Following Capsular release, immediate rehabilitation is necessary to prevent the recurrence of Frozen Shoulder. The aim of the rehabilitation is to reduce pain and to restore full range of motion. • Pain medications are recommended to control pain • Following these procedures, though much easier than the pre-operative phase, aggressive regular exercises need to be done in order to maintain full range of motion for 1 week- 1 month. • If you feel comfortable and have good range of movement, you can begin driving 1 week after your surgery. • Returning to work depends on the nature of your work. If you are in a sedentary job you may be able to return as early as 1 week after surgery • But if your job requires heavy lifting or using your arm at shoulder height, it may take longer time to return to your work. • Full range of motion is achieved at 4 – 6 weeks once the swelling is reduced.

Shoulder Arthroscopy- Dislocation Bankarts Repair Surgery

Shoulder Arthroscopy- Dislocation Bankarts Repair Surgery To better understand what shoulder dislocation is, an overview of the shoulder is needed. The humeral head (ball of the shoulder joint) is centered in the glenoid (the socket of the joint), which stabilizes the shoulder. If the shoulder becomes dislocated, it can tear the glenoid labrum and ligaments that help reinforce its structure. Bankarts repair surgery is a minimally invasive surgery to repair instability and restore function of dislocated shoulders. The goal of Bankart repair surgery is to re-attach the torn labrum and ligaments to the tip of glenoid from which they were detached. Symptoms of Bankart tear or lesions are: • Severe shoulder pain • Shoulder dislocation, single or multiple episode. • Repeated instances where the shoulders give out during activity • Sensation of the shoulder feeling loose, slipping out of the joint or “hanging there” PRE-OPERATIVE STEPS Every effort is made to assess the patient prior to surgery in order to ensure safety of the patient for the elective procedure. 1. After admission, routine blood work-up will be done prior to surgery. Depending on the age of the patient and other premorbid conditions, other investigations such as Echocardiography may be performed in elderly patients. 2. All the investigations prior to surgery are performed in order to ensure that the surgical procedure can be safely tolerated by the patient, since shoulder arthroscopy is an elective procedure. If any risk is involved, the patient/ attendants will be informed so. 3. Blood transfusion though rarely required, may be done depending on the reports. 4. X-rays and/or MRI may be done depending on the surgeon’s choice and the surgical indication. 5. Surgical consent will be explained to the patient detailing the procedure as well as the risks involved, if any. INTRA OPERATIVE STEPS 1. After anesthesia induction and patient positioning your surgeon will make two small incisions in the front and one small incision in the back of the shoulder. 2. The surgery is considered minimally invasive thanks to the small incisions resulting in less discomfort and shorter recovery time. 3. The surgery is performed using a small fiberoptic camera (an arthroscope) and other small instruments. 4. The labrum tissue which is attached due to fibrosis at abnormal position (after shoulder dislocation) is released from the underlying glenoid. 5. Small holes are drilled near the detached labrum, once it has been cleared of loose particles. 6. The surgeon will then attach sutures to the released labrum and pull them tightly across the anchors so the labrum can be reattached to the glenoid. 7. Once the ligaments are firmly in place, the incisions are then closed with small bandages and the surgery is complete. POST OPERATIVE STEPS The first few days following surgery may be painful, but is typically managed by minimal amounts of pain medication. Seven to 10 days after the surgery, patients should have a follow-up with their surgeon.. Physical therapy helps to improve physical strength, range of motion, and assists with normal activities of daily living. 1. After surgery the arm is placed in a sling immobilizer. The sling is worn for at least the first two weeks after the operation. It should be removed when bathing/showering, or to do exercises. The sling is worn to sleep, and when in big crowds for at least four weeks after surgery. 2. Physical therapy should begin 7 to 10 days after surgery. Your surgeon will guide you through the exercises required after the surgery. The exercises are necessary to strengthen the muscles around the shoulder joint. 3. 1-2 week: passive shoulder motion and passive/active elbow motion 4. 2-8 weeks: active-assisted range of motion 5. 8-12 weeks: isometric rotator cuff strengthening 6. 3-6 months: sports- and work-related exercises 7. Return to sport: conditioning at 12 weeks but full return to contact sports at 6 months For the first four to six weeks following surgery, the focus should be on rehabilitation and regaining as much range of motion as possible (keeping surgical repair in mind). Depending on the progress of the patient, the next four to six weeks the focus will be on increasing the strength of the shoulder. As the strength of the shoulder improves any pain should decrease. Patients should visit their physical therapist six-eight times over a period of 12 weeks. Depending on the recovery, a patient can return to normal activity within a short period.

Key Hole Surgery (Hip Arthroscopy) for Hip Pain

Hip Arthroscopy Arthroscopy, also referred to as keyhole or minimally invasive surgery, is a procedure in which an arthroscope is inserted into a joint to check for any damage and repair it simultaneously. An arthroscope is a small, fibre-optic instrument consisting of a lens, light source, and video camera. The camera projects an image of the inside of the joint onto a large screen monitor allowing the surgeon to look for any damage, assess the type of injury, and repair the problem. Hip arthroscopy is a surgical procedure performed through very small incisions to diagnose and treat various hip conditions including: Removal of torn cartilage or bone chips that cause hip pain and immobility. Repair a torn labrum: The labrum is a fibrous cartilage ring which lines the acetabular socket. Removal of bone spurs or extra bone growths caused by arthritis or an injury. Removal of part of the inflamed synovium (lining of the joint) in patients with inflammatory arthritis. This procedure is called a partial synovectomy. Repair of fractures or torn ligaments caused by trauma. Evaluation and diagnosis of conditions with unexplained pain, swelling, or stiffness in the hip that does not respond to conservative treatment. Hip arthroscopy is performed under regional or general anaesthesia depending on you and your surgeon’s preference. Your surgeon will make 2 or 3 small incisions about 1/4 inch in length around the hip joint. Through one of the incisions an arthroscope is inserted. Along with it, a sterile solution is pumped into the joint to expand the joint area and create room for the surgeon to work. Surgical instruments will be inserted through other tiny incisions to treat the problem. The larger image on the television monitor allows the surgeon to visualize the joint directly to determine the extent of damage so that it can be surgically treated. After the surgery, the incisions are closed and covered with a bandage. The advantages of hip arthroscopy over the traditional open hip surgery include: Smaller incisions Minimal trauma to surrounding ligaments, muscles, and tissues Less pain Faster recovery Lower infection rate Less scarring Earlier mobilization Shorter hospital stay

Total Shoulder Replacement Surgery

TOTAL SHOULDER REPLACEMENT/ PARTIAL SHOULDER REPLACEMENT The primary indication for a Total Shoulder Arthroplasty or Hemiarthroplasty is Inability to reconstruct the fracture. A repairable rotator cuff is a pre-requisite for this type of surgery. Replacement of the humeral head along with the glenoid surface constitutes Total Shoulder Arthroplasty whereas replacement of only the humeral head constitutes Hemiarthroplasty of the shoulder joint. Supporting indications • Poor bone quality • Humeral head ischemia in the elderly patient • Intraoperative failure of osteosynthesis • Osteoarthritis of the shoulder joint ( Though reverse shoulder replacement is a preferred procedure) Advantages • Provides a replacement for unreconstructable humeral head • If failure of fixation and/or avascular necrosis (AVN) are highly likely, primary arthroplasty may avoid a second surgery Introduction Arthroplasty is indicated in all cases where a stable fixation is not achievable especially in situations with poor bone quality like severe osteoporosis. In the elderly, the indication might be extended to head-splitting fractures and situations with a probably ischemic humeral head (e.g., a displaced anatomical neck fracture with no capsular attachment remaining). PRE-OPERATIVE STEPS Every effort is made to assess the patient prior to surgery in order to ensure safety of the patient for the elective procedure. 1. After admission, routine blood work-up will be done prior to surgery. Depending on the age of the patient and other premorbid conditions, other investigations such as Echocardiography may be performed in elderly patients. 2. All the investigations prior to surgery are performed in order to ensure that the surgical procedure can be safely tolerated by the patient, since shoulder arthroscopy is an elective procedure. If any risk is involved, the patient/ attendants will be informed so. 3. Blood transfusion though rarely required, may be done depending on the reports. 4. X-rays and MRI will be done ideally in order to guide the surgical plan and the prognosis. 5. Surgical consent will be explained to the patient detailing the procedure as well as the risks involved, if any. INTRA-OPERATIVE STEPS 1. This procedure is performed with the patient in a beach chair position. 2. For this procedure the deltopectoral approach is normally used. 3. It is crucial to evaluate the fracture. Identify the fracture lines, the long head of the biceps and the condition of the rotator cuff. 4. Sutures are inserted into the subscapularis tendon and the supraspinatus tendon just superficial to the tendon’s bony insertions. These provide anchors for reduction, and temporary fixation of the greater and lesser tuberosities. 5. The biceps tendon is temporarily attached to the superior border of the pectoralis muscle. A tenotomy of the long head of the bicipital tendon close to the rotator interval is performed. 6. Any remaining medial capsular attachment to the head should be carefully released with special attention not to damage the axillary nerve medial to the proximal humerus. 7. Insert a suture into the infraspinatus tendon. 8. The correct prosthesis head size can be measured on the retrieved humeral head. 9. In general, the reattachment of the tuberosities can be performed with sutures or cables. 10. Preparation of the humeral shaft is performed after opening the medullary canal and gently enlarging the humeral canal with rasps of increasing sizes. 11. Determine humeral head retroversion 12. Preparation of the Glenoid is performed and an appropriate sized trial is used to see the alignment. 13. Implantation of the prosthesis is performed, respecting the proper insertion height and the retroversion. 14. Depending on the prosthesis type and the remaining bony situation, bone cement may be necessary to fix the implant. Certainly it is wise to use cement if the prosthesis does not fit securely in the humerus. 15. Once the prosthesis is inserted, stability of the shoulder joint is assessed. After stability assessment, wound wash is given followed by wound closure and dressings. POST OPERATIVE PHASE Care after surgery: • Wear your sling or brace at all times for as long as directed. This helps to remind you not to use the arm. It also allows your shoulder to heal and decreases pain. • Apply ice on your shoulder for 15 to 20 minutes every hour or as directed. Use an ice pack, or put crushed ice in a plastic bag. Cover it with a towel. Ice helps prevent tissue damage and decreases swelling and pain. • Place a small pillow or towel behind your elbow when you lie on your back. This keeps your shoulder in proper position. You may need to sleep in an upright position if you cannot sleep on your back. Place 2 to 3 pillows lengthwise behind your back when in bed. Make sure the pillows do not move your shoulder forward. Instead, you can sleep in a reclining chair. • Avoid moving your shoulder. Do not stretch or shrug your shoulder. Do not do exercises on your own until your healthcare provider says it is okay. • Do not lift with your hand on your surgery side. You put pressure on your shoulder muscles when you lift. • Do not lean on the hand of your surgery side. Pressure will cause pain and may cause damage to your shoulder. • Do not drive until your healthcare provider says it is okay. Shoulder bandage care: Keep your dressing clean and dry. Your healthcare provider will tell you when it is okay to take a bath or shower. Once you are able, let soap and water run over your surgery area. Do not scrub the area. Pat the area dry and put on a clean bandage as directed. Pain Management • Some amount of pain is expected after the surgical procedure. • Ice packs can be used for pain reduction • Paracetamol or Nsaids can be considered for pain management especially during the first four weeks. Shoulder rehabilitation protocol The shoulder is perhaps the most challenging joint to rehabilitate both postoperatively and after conservative treatment. Early passive motion according to pain tolerance can usually be started after the first postoperative day. The program of rehabilitation has to be adjusted to the ability and expectations of the patient and the quality and stability of the repair. The full exercise program progresses to protected active and then self-assisted exercises. The stretching and strengthening phases follow. The ultimate goal is to regain strength and full function. Activities of daily living (ADL) can generally be resumed while avoiding certain stresses on the shoulder. Mild pain and some restriction of movement should not interfere with this. The more severe the initial displacement of a fracture, and the older the patient, the greater will be the likelihood of some residual loss of motion. Generally, shoulder rehabilitation protocols can be divided into three phases. Gentle range of motion can often begin early without stressing fixation or soft-tissue repair. Gentle assisted motion can frequently begin within a few weeks, the exact time and restriction depends on the injury and the patient. Resistance exercises to build strength and endurance should be delayed until bone and soft-tissue healing is secure. The schedule may need to be adjusted for each patient. Phase 1 (approximately first 6 weeks) Bandage • Immobilization on a shoulder abduction pillow in neutral position of rotation Range of motion • Passive motion within the pain free interval for abduction, adduction and flexion • No internal or external rotation • Shoulder joint motion up to 90° • ADL for eating and writing allowed Physiotherapy • Passive motion up to 90° • Relaxation/stretching of neck muscles • Training of elbow and hand functions • Specific stabilization therapy for the shoulder joint • Isometric exercises in all directions • CPM up to 90° of abduction Massage • Neck • Shoulder girdle • Thoracic spine Training therapy • Training of the contralateral arm (overflow cardiovascular training) Phase 2 (approximately week 7-11) Bandage • No longer required Range of motion • Assisted/active motion within the pain free interval, also beyond 90° • Careful rotation Physiotherapy • Free motion of shoulder girdle (scapula, clavicle, cervicothoracic junction, cervical and thoracic spine) with specific mobilization • Strengthening exercises especially for ADL • Eccentric muscle activity Massage • As required Ice/warmth • As required Training therapy • Mobilization bath, wound permitting • Training of hand and forearm muscles • Set for shoulder therapy Phase 3 (after week 11) Range of motion • No restrictions on Shoulder movement • Muscle growth for shoulder girdle and all arm muscles Physiotherapy • All physiotherapeutic techniques allowed, active and against resistance • Increasing eccentric muscle activity Training therapy • Handcycling • Training for specific ADL and sports • Machine training • Free weight training

Lower Limb & Pelvic Fractures

OVERVIEW Fractures (Broken Bones) of the thigh, knee and leg, are common from both minor and major accidents. These are incapacitating in the short term as they commonly require the use of crutches, casts and modifications of activities as well as time off work and driving restrictions. DESCRIPTION Lower limb fractures occur from either direct trauma or indirectly from forces applied to the limb (eg twisting injuries). The type of fracture depends on the size and direction of the injury to the limb. Condition Low energy injuries (such as falls from a standing height), usually result in less complex fracture patterns and less soft tissue injury. Typical symptoms of a fracture include: • Pain • Swelling • Deformity • Difficulty weight bearing/walking Lower energy injuries can be missed and may be passed off as ‘sprains’ or ‘strains’. If you have had an injury that is not responding to treatment, it is advisable to see your doctor and obtain X-Rays to rule out an occult fracture. Higher energy injuries (such as motorcycle and car crashes) typically fracture bones in multiple places, into smaller pieces, and commonly disrupt the soft tissues resulting in large amounts of bruising and swelling. These can be challenging to treat and frequently require surgery to restore the bones to their anatomical position to make healing quicker and your function better in the long term. TREATMENT The treatment of lower limb fractures requires careful tailoring to the individual patients demand and the type of fracture sustained. Non-operative treatment of lower limb fractures may involve: • Crutches • Braces • Plaster Casts • Orthotic Shoes • Activity Restriction • Physiotherapy Dr. Jain always encourages non-operative treatment whenever possible ,however many fractures do much better with surgical intervention as surgery can speed up recovery and improve the short and long term outcome. As there many different types of lower limb fractures, there are a large range of surgical options that can be used, these can include: • Plates + screws • Wires • Rods/Nails • External Fixators Sometimes a combination of these is used, and Dr. Jain will discuss the surgical plan with you pre-operatively. He uses the latest technology in minimally invasive percutaneous orthopedic trauma implants, to give you the best outcome possible with the least amount of scarring and soft tissue injury. After surgery, Dr. Jain will discuss your operation as well as plan your rehabilitation in line with your goals and expectations. He uses a highly qualified team of physiotherapists and rehabilitation specialists to get you back to your activities as quickly as possible. Dr. Jain has extensive experience treating fractures, he has completed Training at Cascais Hospital in Lisbon (Portugal, Europe) with world recognized leaders in Orthopedic Trauma Surgery, and has worked as an Orthopedic Joint Replacement & Trauma Consultant at Tata Hospitals. He routinely attends conferences and visits trauma centers worldwide to refine his skills and stay on top of the most recent advances in trauma surgery. He is also actively involved in various trauma research projects and regularly teaches junior doctors.

Upper Limb Fractures

OVERVIEW Fractures (Broken Bones) of the Shoulder, Elbow and Wrist are common from both minor and major accidents. These are incapacitating in the short term as they commonly require the use of a cast or brace and restrict the use of the affected limb. DESCRIPTION Upper limb fractures occur from either direct trauma or indirectly from forces applied to the limb (eg twisting injuries). The type of fracture depends on the size and direction of the injury to the limb. Low energy injuries (such as falls from a standing height), usually result in less complex fracture patterns and less soft tissue injury. Typical symptoms of a fracture include: • Pain • Swelling • Deformity • Difficulty lifting things Lower energy injuries can be missed and may be passed off as ‘sprains’ or ‘strains’. If you have had an injury that is not responding to treatment, it is advisable to see your doctor and obtain X-Rays to rule out a fracture. Higher energy injuries (such as motorcycle and car crashes) typically fracture bones in multiple places, into smaller pieces, and commonly disrupt the soft tissues resulting in large amounts of bruising and swelling. These can be challenging to treat and frequently require surgery to restore the bones to their anatomical position to make healing quicker and your function better in the long term. TREATMENT The treatment of lower limb fractures requires careful tailoring to the individual patients demands and the type of fracture sustained. Non-operative treatment of upper limb fractures may involve: • Braces or Slings • Plaster Casts • Activity Restriction • Physiotherapy Dr. Jain always encourages non-operative treatment whenever possible, however, many fractures do much better with surgical intervention as surgery can speed up recovery and improve the short and long term outcome. As there many different types of upper limb fractures, there are a large range of surgical options that can be used, these can include: • Plates + screws • Wires • Rods/Nails • External Fixators Sometimes a combination of these is used, and Dr. Jain will discuss the surgical plan with you pre-operatively. He uses the latest technology in orthopedic trauma implants to give you the best outcome possible. After surgery, Dr. Jain will discuss your operation as well as plan your rehab in line with your goals and expectations. He uses a highly qualified team of physiotherapists and rehabilitation specialists to get you back to your activities as quickly as possible. Dr. Jain has extensive experience treating fractures, he has completed Training at Cascais Hospital in Lisbon (Portugal, Europe) with world recognized leaders in Orthopedic Trauma Surgery, and has worked as an Orthopedic Joint Replacement & Trauma Consultant at Tata Hospitals. He routinely attends conferences and visits trauma centers worldwide to refine his skills and stay on top of the most recent advances in trauma surgery.

Still searching for
type?